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OSCULATION OF TWO NONLINEARLY ELASTIC BODIES 

L. G. Dobordzhginidze UDC 539.3 

The problem of osculation of two solids S z and S 2 similar in shape to a half-plane and 
made of a nonlinearly elastic harmonic-type material is investigated [i]. The contact area 
is assumed to be free of friction. An exact solution is obtained. 

i. We consider physical regions S z and S 2 with boundaries of close-to-linear shape. 
After deformation, they come into contact along the common portion L of their respective 
boundaries L I and L=. The contact of the bodies is accomplished by external forces, whose 
principal vector is P0 = X + iY (P0 is a known constant). The contact region L is assumed 
to consist of a finite number of segments of the real axis ox: L : [alb I] + ...-~ [a~b~]. Sup- 
pose that S l and S 2 occupy the lower and upper half-planes of the plane of the variable z = 
x + iy [2]. Quantities referring to S I and S 2 will be identified by subscripts i and 2, re- 
spectively. Stresses and rotations are absent for these bodies at infinity. 

The boundary conditions of the problem are [3] 

v7 - -  v~ = / (x), T 1 (x) = T, 2 (x) = 0, N 1 (x) = N= (x) = N (x) on L, ( 1 . 1 )  

On t h e  r e m a i n i n g  p o r t i o n s  o f  t h e  b o u n d a r i e s  t h a t  a r e  f r e e  o f  e x t e r n a l  a c t i o n s  

N = 0, T = O. ( 1 . 2 )  

Here N and T are the normal and the tangential stresses; v is the normal elastic displace- 

ment; f(~) = f=(~) - f1(~) is a function specified on the deformed contact line; fl and f2 
characterize the configuration of the compressed bodies after deformation. It will be re- 

called that x = x + u, u = u(x) is the horizontal elastic displacement of the points of the 

line L. We will assume that f'(~) e H(L). 

The solution makes use of a complex representation of the fields of elastic elements 
for a half-plane in terms of two functions ~(z) and ~(z) of the complex argument z = x + ty 
which are analytic in that half-plane [4]: 

X ~ +  Y~,+ 4~ - (~-+-2p0q~(q)  Y y - - X ~ - - 2 t X y  = - -  4(~+2,tt) g~(q) az* Oz* 

�9 V 7  ' " ] / y  q o~ ~i' (i.B) 

~ r  ~ + ~  I 9 ( ' I  + ~ ] - ~ ;  
u + w - -  ~ + 2 ~  ~ [ ~ ' ( z )  (1.4) 

Oz* ~t 
- - , ~ ' ~ ( z ) §  ~ + 2 ~  ~--~=f o~ - ~+2~ 

_ _  [ ~o (z) ~o" (z) ~ ' ( z ) ] ,  
~"(z) (1.5) 

where 

Z*----Z + U-~- tV; 0"-7" : Y -~x- - t -~Y , 0z --  2 ~ + t - ~  
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o~ 0~ ~ 0z '  q = 2  ~z !' Q ( q ) =  q ~+2,~ ' ( 1 . 6 )  

and  V a r e  e l a s t i c  Lame c o n s t a n t s .  At  s u f f i c i e n t l y  l a r g e  I z l ,  we h a v e  t h e  r e p r e s e n t a t i o n s  
[~] 

q) (z) -= - -  ()~ 4- 2it) (X 4-, tY) In z + z + o (l) ~- const; ( 1 . 7  ) 

,(z) (X.4-2V~)(X--tY) [ t ] 
~ i ~ ( f ~ - [ ) "  2~' (z) i l n z  + o( t )  + const.  ( 1 . 8 )  

Besides, q0' (z) ~ 0 everywhere in the closed region considered here. 

By virtue of the second relation of (i.i), which expresses the absence of tangential 
stresses on L, and from (1.2), we write on the basis of (1.3) and (1.5) 

- ~ ~ 2  

% ( x ) % ( x ) - - ( ~ ,  (x)~t(x)= 0 o n  F (t = 1, 2) ( 1 . 9 )  

(r = L i U L 2 U L). By virtue of (1.9), from (1.3), (1.5), and (1.6) we write 

: on F. (i.i0) 

P r o c e e d i n g  f r o m  ( 1 . 1 ) ,  ( 1 . 2 ) ,  and  ( 1 . 1 0 ) ,  we f o r m u l a t e  t h e  c o n d i t i o n s  

~L 2 (l, j- .~t) - -  2 r  (x) ~= /' (x) on L, 

l q)[ (X)] = ~ on r \ L .  

From ( 1 . 1 1 ) ,  t a k i n g  i n t o  a c c o u n t  ( 1 . 7 ) ,  we f i n d  t h e  e x p r e s s i o n s  

= - -  , Z ~ S i ;  % (z) exp ~ x -- z 

(l.il) 

where 

(1.12) 

- , zES2,  (1.13) %(z)=exp ~ x- 

F~(x)= lYln[h+''~L Z(h+2~+N(x)~)--N(x)] (t=1,2) (1.14) 

a r e  f u n c t i o n s  on L w h i c h  a r e  a s  y e t  unknown.  We a s sume  t h a t  F l ( x )  e H. We t h e n  d i f f e r e n t i -  
ate (1.4) with respect to x. In the resulting relation we take into account (1.9): 

l+~+~v~=+j (x) ~+2~j ~j+2~ i+]~(x)l onL(]=~,2). (1.15) 

We proceed in (1.15) to conjugate values, take the logarithms of the initial and resulting 
equations, and subtract one from the other: 

In [T'~ -u ( x ) q o 7 2 ( x ) ] -  In [r -2 (x)qD; -2 (x)] = 

[ , - -  , -  

= 2 L  arc tgv l  ( x ) - - a r c t g v 2  ,on L 

(differentiation is carried out with respect to the arguments in parentheses). 
hand side of this equality, subject to the constraint 

(I.i6) 

The left- 

p -  

in% (oo) = 0 (i.17) 

is a univalent function. 

Now, by virtue of the familiar Sokhotskii-Plemelj relations we find the boundary values 
of the functions (1.2) and (1.3) on L and introduce the resulting expressions into the left- 
hand side of (i.16). Now, from the first condition of (i.i), after some manipulation, we 
write 
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! qe t 

I F  (x) dx ~ l~ (x) - -  I2 (~) " 
z - - ~ = - 2 " a r c t g  , , , . ~ - g ( x ) - ~ g ( x + u ( x ) ) =  8(x), ( 1 . 1 8 )  

L 0 : ] -+11 (X) 12 (X) 

where 

F (x) = t i n [  (%1 @ ~1) (X" -}- ~t2)  ( 2 ~ a + N ( x ) ) ( 2 9 ~ - b N ( x ) )  1 
2 L ( 2 ( ~ U - i - ~ I ) - - N - ( x ) ) ( 2 ( ~ , 2 - J - P ' 2 ) - - N ( x ) ) "  (1 .19 )  

The r i g h t - h a n d  s ide  o f  (1 .18 )  i s  assumed to  be a known f u n c t i o n  o f  the v a r i a b l e  x.  We 

denote by a the angle formed by a s t r a i g h t  tangent  drawn at  the p o i n t  ( x ,  f ( ~ ) )  to  the l i n e  

L I and the p o s i t i v e  d i r e c t i o n  of  the ax i s  ox;  we denote by ~ the angle formed by a tangent  

to L 2 at the point (x, f2(~)) and the same straight line: 

t g a ( x )  = / :  (x), t g~ (x )  =- /2  (x). ( 1 . 2 0 )  

Now 
~. g- $ 

g(x) = (a/2)[a(x)--  ~(x)]. ( 1 . 2 1 )  

E q u a l i t y  ( 1 . 1 8 )  w i t h  r e s p e c t  t o  t h e  f u n c t i o n  F ( x )  on L i s  a c h a r a c t e r i s t i c  s i n g u l a r  
i n t e g r a l  e q u a t i o n  o f  t h e  f i r s t  k i n d .  The g e n e r a l  s o l u t i o n  o f  t h i s  e q u a t i o n  o f  c l a s s  h 0 ( a  
s o l u t i o n  n o t  bounded  a t  t h e  e n d p o i n t s  o f  t h e  c o n t a c t  l i n e )  a p p e a r s  a s  f o l l o w s  ( t h i s  c l a s s  
c o r r e s p o n d s  t o  t h e  i n d e x  ~ = n) [5] 

F(xo)  = (I)(xo)/ ] / ' (xo - -  al)(x 0 - -  b : ) . . .  (x 0 - -  a,~)(x o - -  b , J ,  ( 1 . 2 2 )  

where 

I ~ V (x - -  al) (X --  bl) "'" (z - -  an) (x - -  bn) a (x) dx 
(1) (Xo) 2n j " x - -  x o + p (xo), ( 1 . 2  3 )  

L 

P(x 0) = Clx0 n-I + C=x0 n-2 + ... + C n is an arbitrary polynomial of degree not greater than 
n - i. Note that in these relations the constants a k and b k (k = I, 2 ..... n) are assumed 
to be known. The constants CI, C2, .... C n are found from (1.7) and additional problem con- 
ditions. 

For the solution of the class h(a:,bl ..... a~,b~) (the solution bounded in the neighborhood 
of the above-mentioned points), which corresponds to the index K = -n (the solution becomes 
zero at those points) the relations 

~(a~) = O, ~(b~) = O, t = t ,  2 . . . . .  n ( 1 . 2 4 )  

must take place. From these equalities the constants a I and bz can be calculated. 

After defining from (1.18) F(x) on L, we obtain from (1.19) the desired function N(x) 
on the same region: 

N (x) = -- h + ] / "U--  @V ( i. 25) 

where 

exp (2F) 1 

exp (2F) 
- -  i~: + ~1) (~2 + ~2)' Y = I - -  exp (2F). 

The f o r m u l a  becomes  p a r t i c u l a r l y  s i m p l e  when b o t h  c o n t a c t i n g  b o d i e s  a r e  made o f  t h e  
same material (~: = X2 = X, P: = ~2 = ~): 

N (x) = 2~ [exp ( f  (x)) -- 1] (1o 27) 

t ~- ~ exp (F (x)) 

A f t e r  d e f i n i n g  N(x)  in  t h i s  f a s h i o n  and s u b t i t u t i n g  t h e  r e s u l t i n g  v a l u e s  i n t o  ( 1 . 1 4 )  and 
then substituting the results into (1.12) and (i.13), we can write the functions ~:(z) and 

760 



~2(z). From expressions obtained from (1.8), (1.9), and (1.17) we derive by the ordinary 
procedure the potentials @1(z) and @2(z). Now we can calculate from (1.3)-(1.6) the stress- 
es and displacements on any portion of the region investigated. 

The principal problem of the theory of contact interactions is finding the dimensions 
of the contact area (if not known in advance) and the contact stresses on that area. The 
following two examples illustrate the realization of this method, which eliminates the flaws 
of the respective problems in the linear theory. 

2. Example i. We consider a contact area where the endpoints of the contact region 

are unknown and the contact area is a linear segment tab] parallel to the axis ox, where 
n = i and 6(x) = 0. 

The solution of (1.19) sought for, according to (1.20)-(1.23), appears as 

F ( x )  = C I V ( x  - -  a ) (b  - -  x ) ,  ( 2 . 1 )  

where  C i s  an a r b i t r a r y  r e a l  c o n s t a n t .  For  d e t e r m i n i n g  t h i s  c o n t a c t  we i n t r o d u c e  ( 2 . 1 )  
i n t o  ( 1 . 1 2 )  and ( 1 . 1 3 )  and o b s e r v e  t h e  a s y m p t o t i c  b e h a v i o r  o f  t h e  r e s u l t i n g  e x p r e s s i o n s  a t  
l a r g e  [ z ] .  Now, t a k i n g  i n t o  a c c o u n t  ( 1 . 7 ) ,  we o b t a i n  

Vo[ h+ih + ~ . (2.2) 
J 

Substituting (2.2) into (2.1), we obtain from (1.25) and (1.26) the value of N(x) on the 
contact area. For the same material at a < x < b this expression is 

2~t (%+~) exP/2~()~@~) ] /~__ a) (b__ x) --I 
N ( x )  = �9 ( 2 . 3 )  

[ Po O~ + 2~') ] + + exp 

A peculiarity of this formula (as opposed to the classical linear analog) is the fact that 
in the neighborhood of endpoints of the contact region it yields values of 2(I + g), which 
are finite although fairly large [limN(x) = 2(I + ~) as x ~ a + or x § b-]. Besides, the 
distribution of contact stresses is substantially affected by the elastic properties of the 
contacting materials. 

Table 1 gives the values of N(x)/2p at different points of the contact area for the 
various ratios P0/2p (where g is the shear modulus for a given material). The first values 
correspond to the linear theory; they are followed by the values for the nonlinear theory. 
(We assume that a = - i and b = i, and that a force Po is applied to the die at the symmetry 
center.) 

As seen from Table i, under the nonlinear model the contact normal stress approximately 
on the area [-0.5; 0.5] under the die is smaller than in the classic linear case. By con- 
trast, stress values outside this area tend to be larger. Remarkably, the difference between 
the linear and nonlinear results is not large. Even for x = 0.99 it does not exceed 5%. 

In the general case (with different elastic materials) the situation is similar: The 
stress field on a closed contact area has no singularities. Therefore, we have constructed 
an exact solution for a problem in a closed region. 

For determining the function ~'(z) we take into account (2.1) and (2.2) in (1.12) and 
(i.i3): 

9'(z) = exp [(~ + 2~)Po:(8np(Z + ~)]/(z -- a) (b  - -  z))]. 

Example 2. We consider a single contact area where S l and S 2 are bounded by circles of 
radii El and Ri, respectively; R I and R 2 are fairly large values (compared to the contact 
area). With an acceptable accuracy we can assume that 

5 ( x )  = ex ,  e = I / R  1 - 6  t / R 2 .  

We should now find a solution of (1.18) bounded at the ends of the contact region sub- 
ject to constraint (1.24). The calculation results at % l = 12 = i, ~i = ~2 = D, RI = R2 = 
R; a = -s b = s are the following: 
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TABLE i 

Po/l~ 0 0,2 0,~ 0,6 0,8 0,9 0,99 

0,2 0,0318 
0.0304 

0,4 0,0637 
0,0609 
0,0955 

0,6 0,0905 
0,t272 

0,8 0,t241 

0,0325 
0,0322 
0,0650 
0,0648 
0,0974 
0,0967 
0,1292 
0,t26t 

0,0347 
0,0346 
0,0694 
0,0675 
0,t041 
0,1040 
0,t388 
0,i374 

0,0398 
0,0403 
0,0796 
0,0812 
0,1194 
0,t233 
0,1592 
0,1656 

0.053i 
010542 
0,t062 
0,t094 
0,1593 
0,1656 
0,2124 
0,2202 

0,0730 
0,0747 
0,t460 
0,15t7 
0,2190 
0,2308 
0,2920 
0,3i08 

0,2257 
0, 2373 
0,4514 
0,4847 
0,6771 
0,7t82 
0,9028 
0,9421 

TABLE 2 

%/~ 
o 0,2 0.4 0,6 0,8 t 

16 

0,i636 
0,1632 
0,2087 
0,2040 
0,2335 
0,2203 

0,i628 
0,1612 
0,2072 
0,20t5 
0,2309 
0,2t76 

0,t608 
0,1544 
0,2008 
0,t93i 
0,2247 
0,2084 

0,1498 
0,1424 
0,1627 
0,t545 
0,202t 
0,t932 

0,t227 
0,1218 
0,t553 
0,t54t 
0,t723 
0,t668 

0 
0 
0 
0 
0 
0 

i f>o  R ~+2~, IZ?__ ~ 

2a (k4- .) [exp (Vf-ff~--x2/R) --t] 
N ( : 0  = 

(2.4) 

Taking into account (2.4) in (1.12) and (1.3), we obtain 

~'(z) = exp ( ( V l  ~ -- z 2 + tz)/R). 

Hence, by virtue of (2.3), the contact stress goes to zero at the endpoints of the contact 
area. 

Table 2 lists the values of N(x)/D at the different points of the contact area for 
various X/~ and at P0/~D = I/i0. We see from (2.4) that the difference between the values 
N(x)/D under nonlinear and linear theories is small. In particular, for these maximal 
stresses (at x = 0) it is at most 6%. 

In a similar fashion we construct an effective solution for the case of two contact 
segments, both with known and unknown contact regions. Calculations indicate that in the 
former case contact stresses remain limited over the entire closed region, while in the 
latter case they become zero at the endpoints of the contact segments. 
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